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The lasing threshold of a random laser is computed numerically from a generic model. It is shown that
spatial correlations of the disorder in the medi(ira., dielectric constaptead to an increase of the decay rates
of the eigenmodes and of the lasing threshold. This is in conflict with predictions that such correlations should
lower the threshold. While all results are derived for photonic systems, the computed decay rate distributions
also apply to electronic systems.
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In the theory of disordered media, two important regimessample seems to be Réfl0]. There, it was estimated that
diffusive and localized, are distinguishgtl. In the diffusive  localized states become exponentially more frequent when
regime (for a weak or moderate disorderigenstates are the disorder inside the sample is spatially correlated. Moti-
extended and efficient transport is possible. In the localizedated by the picture of photons traveling in a closed loop
regime (for a strong disordgr eigenstates become localized inside a ring-shaped structuf8], they study a ring-shaped
and transport is strongly inhibited. Many experimental find-area of higher dielectric constant. This is a very special situ-
ings for random lasers are more consistent with the assum@.tion, and it is not obvious how characteristic such a SpeCial
tion of a lasing mode that is localized, while a direct experi-Situation is for the entire behaviofit should be noted that
mental analysis of the sample shows that it is in the diffusivdhe opposite effect, namely, in a localized sample a few
regime. modes become extended when spatial correlations in the dis-

To determine whether a sample is in the localized or in theorder are introduced, is well understood, see, e.g.,[R&f.)
diffusive regime, a transport property is measured. The most In this paper, we will study this problem from a more
efficient way to achieve this is to check for the rounding ofgeneric approach. The lasing threshold of a sample is deter-
the backscattering corf€]. Such a rounding is not reported Mined by the decay rates of the eigenstates of the system
from experiment§$3,4]. Transport is, however, dominated by Since the loss £ decay of photons in the mode has to be
extend eigenstates, and the simultaneous existence of a fés@mpensated by pumping if the sample is to start the lasing
localized eigenstates in a sample in the diffusive regime, i.e@ction. Following the approach of Réfl2] we numerically
on an average diffusive, would not be noticed5]. Such ~ compute the decay rate distribution of a two-dimensional
localized modes have recently been detected experimental§2mple on a suitable gri@Earlier work on the lasing thresh-
in a diffusive sampld6]. old of chaotic cavitieg13] cannot be applied since by con-

The important question is to explain under which condi-struction all eigenstates are extenddd) We improve on
tions such localized eigenstates can exist in a diffusivéPrevious work by including spatial correlations.
sample.(These states have been termed anomalously local- We use the Anderson Hamiltonian which describes the
ized states or prelocalized states. For a recent review, ségotion of an uncharged particle in a spatially varying poten-
Ref.[7].) One-dimensional disordered systems are always ifial. The Schrdinger equation for electronic systems with
the localized regime, i.e., these systems can never show difPatially varying potential ha@t constant energythe same
fusive behavior. Theoretical studies on such systems thu®rm as the Helmholtz equation for photonic systems with a
cannot give information on the interplay between extendedpatially varying dielectric constant. Our results can thus di-
and localized modes. The situation is different in two- andrectly be applied also to photonic systems. The sample is
three-dimensional samples. Two-dimensional sample§iscretized with lattice spaciny, where for electronic sys-
shorter than the localization length behave similar to threetemsA = m/kg (k is the wave vector at the Fermi leyeind
dimensional samples, and one is allowed to replace thredor photonic systema =2\/7 (X is the wave length of the
dimensional systems with their computationally cheapefight). This is a natural choice in which there is then pre-
two-dimensional counterparts. cisely one propagating mode per transversal lattice point, and

The computational cost of treating a two-dimensionalthe width of the sample is best measured in terms of the
sample is significantly higher than for a one-dimensionalnumberN of propagating modes.
sample, and only few studies have been publii@dRef-  Transport is modeled by nearest-neighbor hopping with
erence[5] models the scatterers in the disordered media agate 1.(The results are easily adapted to an arbitrary sppeed
dipoles, Ref.[9] studies circular particles using the finite- Of transporf With a spatially varying potentiaP(x,y), the
difference time-domaifFDTD) method. Both publications Hamiltonian for a sample of Ienglh:[A becomeg12]
do not state explicitly whether their samples are in the diffu- )
sive or in the localized regime, but the parameters given o). .y) = S Syy [P(X,Y) =1(81y+ é1y)]

strongly suggest that the samples are in the localized regime. 168 T+ 6 N+ S (S )
The only publication so far on the interplay between the vy (G0 B0 ) O (By1y
diffusive and the localized eigenstates inside a diffusive +0y-1y)s D
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withx=1, ... L andy=1, ... N. The imaginary part o¥
models coupling of the sample to the outside where we as-
sume that we operate at the center of the conduction band.

The spatial correlations are assumed to fall of exponen-
tially such thatP(x,y) takes on random values, normal dis-
tributed with zero mean and correlator

<P(F)P(F’)>=w2exp(—|r:|>. @

Here,w measures the strength of the disorder &ds the
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correlation radius. Since we need to generate a large number g~ 1 Numerically computed rescaled mean-free pattie-

of mutually correlated random numbers, a Fourier baseqlenging on the disorder strengthand the correlation raditg, (in
method has to be employéi4]. _ units of the lattice spacingd). The solid lines are for samples of
The eigenvalues of the matri correspond to the eigen- \igth N=51, the dashed lines for samples of widih=81.
modes of the system. Their real partgives the energyor,  samples were computed with in steps of 0.1 andR. in steps of
for photonic systems, the frequenayf the mode, and their 0.5\ (plus the valueR.=0.2A). By rescalingl —Iw!7% we can

imaginary party the decay ratgl5]. We thus have an eigen- demonstrate the apparent scalihgw

~171 and the factorization

value problem of a non-Hermitian complex symmetric ma-I(w,R)=f(w)f,(Ry).

trix, but an eigensolver specifically adopted to this structure
exists[12]. Even with this efficient eigensolver, this is still a
numerically expensive task, and it is impossible to anaIyzeS
so many samples that there would be no more noise in th
results.

While the model is described in terms of the disorder
strengthw, contact with experiments or analytical theories is

The increase dfwith increasingR. poses a problem for a
stematic study of the effects of correlations. One has to
ecide whether to compare samples with identi¢ahd thus
variablew) or samples with identical (and thus variablé).
The final results must deperiepart from trivial prefactons

best made by introduction of the mean-free path can be Ny on the ratiod/I andR./I—not on any of those quan-
computed from the length dependence of the transmissiofli€s separately. This decision is thus “only” one of numeri-
probability T through the sample. In the diffusive reginie, cal efficiency and minimization of finite-size effects.

<L<NI, it is given by[1]

For most of our simulations, we have decided to kéep

constant at=12.5\. For each value dR., the needed value
1 L for w was determined by interpolation of the numerical data

==1+-. (3

presented in Fig. 1. The choice of constamffers the ad-

o N . vantage that, even iR; is changed, samples with identical
The transmission probability has been computed using thephysical” length L/l occupy the same number of lattice
method of recursive Green's functiofi$6] for a variable points, and thus need the same amount of numerical work.

disorder strengthw and correlation lengttR.. We deter-  [For constant physical length/I, the needed computing
mined the mean-free path by fitting the numerically com-me scales a®©(12). With constantw, this would impose

puted T(L) to this functional form self-consistently in the
interval [1;101]. (Picking some other interval, e.d.0;l],

changed the result only by about )% he rescaled results
are depicted in Fig. 1 for bothNl=51 andN=81, i.e., for

samples of different width. As figure shows, both sets of
curves are almost identical, thereby demonstrating that w
are operating in the wide-sample regime. The mean-free pat
increases significantly aR. increases. This is immediately
obvious since with increasinB, the potential changes less

severe restrictions on the rangeRyf that could be treategl.

We have computed the decay rates for samples of width
N=50 for lengthL/1=1,2,3,4,5,6,9,12,15,18, and correla-
tion radiusR./A=0.0,0.2,0.5,1.0,1,5..,7.5. For each set
f parameters, approximately 2000 samples were generated.
he maximum value ot is limited because we are inter-
ested in the diffusive regime, hentehas to be sufficiently
smaller than the localization length,.= (N+ 1)I/2. We did

within a given distance; hence, there is less scattering. Ot consider larger values & than 7.3 since the sample
We would like to point out two “curiosities.” The numeri- should be much wider than the characteristic length scale of

cal data Suggest that the mean-free phtfactorizes as the disorder. OtherWise, the Sample would ef‘feCtiver be-

l(w,Ry) = f1(w)f,(R.). We did not manage to find an expla- come one dimensional.

nation for this observation. Furthermore, the mean-free path To check the results, we have computed the decay rate

seems to scale dscw™ 7% where 1.71 is a numerical pa- distribution also folN=280 for a few selected values &fl

rameter. For an uncorrelated random order that is uniformhandR.. To complement the other simulations, we have kept

distributed in the interva] —w;w], a scalinglocw™ 1%

was w constant. As explained above, this implies that we could

found numerically[12]. An analytical theory is available only includeR,<2A.

only for one-dimensional systems in the limit—0 where

Following the approach introduced in Refl2] for

| 1Mv? is found[17], so that a universal scaling for a finite samples in the diffusive regime, we fit the numerically com-
w might not exist at all. puted decay rate distribution to the functional form
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FIG. 2. Characteristic decay ratg, as a function of sample FIG. 3. Comparison of the average of the lasing threshold, di-
lengthL and correlation radiuR; (for samples of widthiN=50).  rectly computed from the numerical daolid line), and the most
The dashed line is for the control simulations wih=80 andL likely lasing threshold computed from the distribution of the indi-
=24. vidual decay rategdashed ling Both lines have been computed

from the same samples, explaining the correlation of the noise in
2 the two sets of lines.
Piy=221-q[m+1 2 @
Y Y "vo | There are two different approaches to compute the lasing

threshold of a random laser. The direct approach is to com-
pute the eigenmodes of a certain number of realizations of
where the fitting parameteid and y, depend orlN, L, and  the disordered systems, then for each realization to determine
R., and Q(a,x)=I'(a,x)/I'(a) is the regularized Gamma the smallest decay rate inside the amplification window, and
function . finally collect statistics for those values. Since this process
All numerically computed histograms fit well to the form yields only a single datum per sample, a very large number
(4). The dependence d?(y) onto M is only weak forM of realizations needs to be computed to arrive at data of
>1, making a precise determination Bf difficult. Within  sufficient quality. The average lasing threshold determined in
this error limit, we did not find a significant dependencébf this way is depicted in Fig. 3 as dashed line.
on R;, and M is approximately given by the.=0 result, Frequently more efficient is the second approach where
M=N/[1+L/(6l)] [12]. one starts with the computation of the distributiBy) of
The fitting parametet,, marking the typical value of the the individual decay rates. The intermediary result is either a
decay rates, can be determined to much better precisipn. numerical histogram, or, by fitting the histogram to an ana-
is much more important for the lasing threshold tidnso  lytical form, a distribution function that can be evaluated
the limited precision ofMl does not pose a problem. The directly for an arbitrary argument. We adopt the latter and
determinedyy is shown in Fig. 2. use Eq.(4) together with the values d¥l and y, computed
ForR.=0, y,L? seems to approach a constant valug as by fitting.
is increased. This value is about 20% larger than the value The distributionP,(y,) of the lasing threshold is the dis-
1/(2cl) found numerically for equidistributed disorder in the tribution of the smallest value out of thévalues, each dis-
interval [ —w;w] [12]. Trying to approach the limit. — oo tributed according toP(y). This assumes that the decay
numerically is not possible since then the sample would berates of different modes are uncorrelated. Kor1 this
come localized. seems logical, but to the best of our knowledge no explicit
The important conclusion from Fig. 2 is that for samplescheck of this assumption has been published so far. As a side
of arbitrary lengths, the introduction of correlations in the effect of our computations, we will fill this gap.
disorder leads to an increase of the decay rates. This increase P|(y)) is difficult to evaluate numerically foK>1 since
is quick asR. is increased starting from 0, and becomesit is sharply peaked. The positiop,, of the maximum ofP,
slower for largeR.. The same behavior is seen in the controlis immediately seen to be given by
simulations withN=80 and a fixedv (and thus variabl¢). dP(y)
Until now, all results are valid for both electronic and _ Ym Ym , , 2
photonic systems. Now we will specialize to random lasers. =~ dy,, 1= jo P(y")dy }_(K_l)[P(ym)] :
The light inside a random laser is amplified by a laser dye. (5)
This dye is able to amplify light within a certain range of
frequencies, so onli{>1 eigenmodes out of all eigenmodes  Since P, is that sharply peakedy,, already contains all
of the system are amplified. This number varies only slightlythe relevant information, and nothing relevant is lost by not
between different realizations of the same ensemble due tcomputing the entire distribution. The lasing threshold com-
an effect known as spectral rigidift]. The lasing threshold puted from Eq.(5), after inserting the fitting parameteké
is given by the smallest decay rate out of Hienodes within  andy, computed from the numerical histograms into Ej,
the amplification window 18]. This is immediately obvious is shown as solid line in Fig. 3.
since the lasing threshold is passed when photons are createdFrom the figure, two important conclusions can be drawn.
faster than they can decay-gscape from the sample First, the lasing threshold computed via the two separate
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methods agrees wellThe noise of the two sets of curves is ring-shaped area of increased dielectric constant does lead to
correlated since the same raw data were used as input ftine formation of a localized state, as suggested by the au-
both methods.This means that the decay rates of differentthors, but the influence of the disorder around that ring-
modes indeed are uncorrelated. Furthermore, also fitting thehaped area significantly reduces this effect. Another, equally
numerical histogram to the forif#) is a valid procedure. likely, explanation is that in our simulations, we are only able
The second conclusion—the heart of this paper—is thato treat samples of finite size, with a finite number of eigen-
introducing spatial correlations into the disorder of a randonstates. The creation of a localized state may be an event that
laser increases the lasing threshold, in contradiction to pras so rare the we fail to see such an event occur in our
dictions[10]. finite-size simulations. On the other hand, the typical length
In this paper, we have thus arrived at two related—but noscale is given by the area per lasing mode, measured experi-
identical—results. We have shown that the characteristic dementally to be a few 1m? in two-dimensional ZnO films
cay rates increase if spatial correlations of the disorder argl9], and our samples are larger than this.
introduced(cf. Fig. 2. The computed decay rate distribution  To give a definite answer on whether spatial correlations
possesses the same form, just with different parameter, a®mn explain the formation of localized states, more numerical
earlier observed for diffusive samples with uncorrelated disstudies are needed, preferably using different methods. Spe-
order[12]. This first result means that the “typical” eigen- cialized but numerically efficient model§] cannot incorpo-
states become more lossy. rate spatial correlations of the dielectric constant. Two-
Our second result is that the lasing threshold also indimensional FDTD simulations have already been used to
creasescf. Fig. 3. This means that also the “special” eigen- describe random lasef9]. These need to make only mini-
states with lower-than-average loss, which are selected byal assumptions and can be extended to include arbitrary
mode competition to become the lasing modes, become mowspatial correlations. FDTD simulations thus might be a good
lossy. Even though we did not directly compute the spatiabtandidate, but diffusive samples need to be larger than the
extend of the eigenstates, this still clearly demonstrates thdbcalized samples studied so far. Given that FDTD is com-
no localized(or prelocalizedl eigenstates are formed by the putationally very expensive, it is not obvious to us whether
introduction of spatial disorder. We thus fail to observe thethis would still be numerically feasible.
prediction that such states should be credfid].
There are several explanations for the difference between This work was supported by the European Union Marie
our results and Ref.10]. One explanation is that a single Curie program under Grant No. HPMF-CT-2002-01794.
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