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Influence of spatial correlations on the lasing threshold of random lasers
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The lasing threshold of a random laser is computed numerically from a generic model. It is shown that
spatial correlations of the disorder in the medium~i.e., dielectric constant! lead to an increase of the decay rates
of the eigenmodes and of the lasing threshold. This is in conflict with predictions that such correlations should
lower the threshold. While all results are derived for photonic systems, the computed decay rate distributions
also apply to electronic systems.
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In the theory of disordered media, two important regim
diffusive and localized, are distinguished@1#. In the diffusive
regime ~for a weak or moderate disorder!, eigenstates are
extended and efficient transport is possible. In the locali
regime~for a strong disorder!, eigenstates become localize
and transport is strongly inhibited. Many experimental fin
ings for random lasers are more consistent with the assu
tion of a lasing mode that is localized, while a direct expe
mental analysis of the sample shows that it is in the diffus
regime.

To determine whether a sample is in the localized or in
diffusive regime, a transport property is measured. The m
efficient way to achieve this is to check for the rounding
the backscattering cone@2#. Such a rounding is not reporte
from experiments@3,4#. Transport is, however, dominated b
extend eigenstates, and the simultaneous existence of a
localized eigenstates in a sample in the diffusive regime,
on an average, diffusive, would not be noticed@5#. Such
localized modes have recently been detected experimen
in a diffusive sample@6#.

The important question is to explain under which con
tions such localized eigenstates can exist in a diffus
sample.~These states have been termed anomalously lo
ized states or prelocalized states. For a recent review,
Ref. @7#.! One-dimensional disordered systems are alway
the localized regime, i.e., these systems can never show
fusive behavior. Theoretical studies on such systems
cannot give information on the interplay between extend
and localized modes. The situation is different in two- a
three-dimensional samples. Two-dimensional samp
shorter than the localization length behave similar to thr
dimensional samples, and one is allowed to replace th
dimensional systems with their computationally chea
two-dimensional counterparts.

The computational cost of treating a two-dimension
sample is significantly higher than for a one-dimensio
sample, and only few studies have been published@8#. Ref-
erence@5# models the scatterers in the disordered media
dipoles, Ref.@9# studies circular particles using the finite
difference time-domain~FDTD! method. Both publications
do not state explicitly whether their samples are in the dif
sive or in the localized regime, but the parameters giv
strongly suggest that the samples are in the localized reg

The only publication so far on the interplay between t
diffusive and the localized eigenstates inside a diffus
1063-651X/2003/67~6!/065603~4!/$20.00 67 0656
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sample seems to be Ref.@10#. There, it was estimated tha
localized states become exponentially more frequent w
the disorder inside the sample is spatially correlated. M
vated by the picture of photons traveling in a closed lo
inside a ring-shaped structure@3#, they study a ring-shaped
area of higher dielectric constant. This is a very special s
ation, and it is not obvious how characteristic such a spe
situation is for the entire behavior.~It should be noted tha
the opposite effect, namely, in a localized sample a f
modes become extended when spatial correlations in the
order are introduced, is well understood, see, e.g., Ref.@11#.!

In this paper, we will study this problem from a mor
generic approach. The lasing threshold of a sample is de
mined by the decay rates of the eigenstates of the sys
since the loss (5decay! of photons in the mode has to b
compensated by pumping if the sample is to start the las
action. Following the approach of Ref.@12# we numerically
compute the decay rate distribution of a two-dimensio
sample on a suitable grid.~Earlier work on the lasing thresh
old of chaotic cavities@13# cannot be applied since by con
struction all eigenstates are extended@1#.! We improve on
previous work by including spatial correlations.

We use the Anderson Hamiltonian which describes
motion of an uncharged particle in a spatially varying pote
tial. The Schro¨dinger equation for electronic systems wi
spatially varying potential has~at constant energy! the same
form as the Helmholtz equation for photonic systems with
spatially varying dielectric constant. Our results can thus
rectly be applied also to photonic systems. The sample
discretized with lattice spacingD, where for electronic sys-
temsD5p/kF (kF is the wave vector at the Fermi level! and
for photonic systemsD52l/p (l is the wave length of the
light!. This is a natural choice in which there is then pr
cisely one propagating mode per transversal lattice point,
the width of the sample is best measured in terms of
numberN of propagating modes.

Transport is modeled by nearest-neighbor hopping w
rate 1.~The results are easily adapted to an arbitrary speec
of transport.! With a spatially varying potentialP(x,y), the
Hamiltonian for a sample of lengthL5L̃D becomes@12#

H(x,y),(x8,y8)5dxx8dyy8@P~x,y!2 i ~d1y1dLy!#

1dyy8~dx11,x81dx21,x8!1dx,x8~dy11,y8

1dy21,y8!, ~1!
©2003 The American Physical Society03-1
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with x51, . . . ,L̃ andy51, . . . ,N. The imaginary part ofH
models coupling of the sample to the outside where we
sume that we operate at the center of the conduction ba

The spatial correlations are assumed to fall of expon
tially such thatP(x,y) takes on random values, normal di
tributed with zero mean and correlator

^P~rW !P~rW8!&5w2expS 2
urW2rW8u

Rc
D . ~2!

Here,w measures the strength of the disorder andRc is the
correlation radius. Since we need to generate a large num
of mutually correlated random numbers, a Fourier ba
method has to be employed@14#.

The eigenvalues of the matrixH correspond to the eigen
modes of the system. Their real partv gives the energy~or,
for photonic systems, the frequency! of the mode, and their
imaginary partg the decay rate@15#. We thus have an eigen
value problem of a non-Hermitian complex symmetric m
trix, but an eigensolver specifically adopted to this struct
exists@12#. Even with this efficient eigensolver, this is still
numerically expensive task, and it is impossible to anal
so many samples that there would be no more noise in
results.

While the model is described in terms of the disord
strengthw, contact with experiments or analytical theories
best made by introduction of the mean-free pathl. It can be
computed from the length dependence of the transmis
probability T through the sample. In the diffusive regime,l
&L!Nl, it is given by@1#

1

T
511

L

l
. ~3!

The transmission probability has been computed using
method of recursive Green’s functions@16# for a variable
disorder strengthw and correlation lengthRc . We deter-
mined the mean-free path by fitting the numerically co
puted T(L) to this functional form self-consistently in th
interval @ l ;10 l #. ~Picking some other interval, e.g.,@0;l #,
changed the result only by about 1%.! The rescaled result
are depicted in Fig. 1 for bothN551 andN581, i.e., for
samples of different width. As figure shows, both sets
curves are almost identical, thereby demonstrating that
are operating in the wide-sample regime. The mean-free
increases significantly asRc increases. This is immediatel
obvious since with increasingRc the potential changes les
within a given distance; hence, there is less scattering.

We would like to point out two ‘‘curiosities.’’ The numeri
cal data suggest that the mean-free pathl factorizes as
l (w,Rc)5 f 1(w) f 2(Rc). We did not manage to find an expla
nation for this observation. Furthermore, the mean-free p
seems to scale asl}w21.71, where 1.71 is a numerical pa
rameter. For an uncorrelated random order that is unifor
distributed in the interval@2w;w#, a scalingl}w21.5 was
found numerically@12#. An analytical theory is available
only for one-dimensional systems in the limitw→0 where
l}1/w2 is found @17#, so that a universal scaling for a finit
w might not exist at all.
06560
s-
.
-

er
d

-
e

e
e

r

n

e

-

f
e
th

th

ly

The increase ofl with increasingRc poses a problem for a
systematic study of the effects of correlations. One has
decide whether to compare samples with identicall ~and thus
variablew) or samples with identicalw ~and thus variablel ).
The final results must depend~apart from trivial prefactors!
only on the ratiosL/ l andRc / l—not on any of those quan
tities separately. This decision is thus ‘‘only’’ one of nume
cal efficiency and minimization of finite-size effects.

For most of our simulations, we have decided to keel
constant atl 512.5D. For each value ofRc , the needed value
for w was determined by interpolation of the numerical da
presented in Fig. 1. The choice of constantl offers the ad-
vantage that, even ifRc is changed, samples with identica
‘‘physical’’ length L/ l occupy the same number of lattic
points, and thus need the same amount of numerical w
@For constant physical lengthL/ l , the needed computing
time scales asO( l 2). With constantw, this would impose
severe restrictions on the range ofRc that could be treated.#

We have computed the decay rates for samples of w
N550 for lengthL/ l 51,2,3,4,5,6,9,12,15,18, and correl
tion radiusRc /D50.0,0.2,0.5,1.0,1.5, . . . ,7.5. For each se
of parameters, approximately 2000 samples were genera
The maximum value ofL is limited because we are inter
ested in the diffusive regime, henceL has to be sufficiently
smaller than the localization lengthL loc5(N11)l /2. We did
not consider larger values ofRc than 7.5D since the sample
should be much wider than the characteristic length scal
the disorder. Otherwise, the sample would effectively b
come one dimensional.

To check the results, we have computed the decay
distribution also forN580 for a few selected values ofL/ l
andRc . To complement the other simulations, we have k
w constant. As explained above, this implies that we co
only includeRc<2D.

Following the approach introduced in Ref.@12# for
samples in the diffusive regime, we fit the numerically co
puted decay rate distribution to the functional form

FIG. 1. Numerically computed rescaled mean-free pathl, de-
pending on the disorder strengthw and the correlation radiusRc ~in
units of the lattice spacingD). The solid lines are for samples o
width N551, the dashed lines for samples of widthN581.
Samples were computed withw in steps of 0.1 andRc in steps of
0.5D ~plus the valueRc50.2D). By rescalingl→ lw1.71, we can
demonstrate the apparent scalingl}w21.71 and the factorization
l (w,Rc)5 f 1(w) f 2(Rc).
3-2



a

.

e

s
lu
e

be

es
he
ea
e
ro

d
rs
ye
of
s
tl
e

a

ing
m-
of
ine
nd

ess
ber

of
in

ere

r a
a-
d
nd

-

y

icit
side

ot
m-

n.
ate

di-

i-
d
e in

RAPID COMMUNICATIONS

INFLUENCE OF SPATIAL CORRELATIONS ON THE . . . PHYSICAL REVIEW E 67, 065603~R! ~2003!
P~g!5
g0

2

g2 F12QS M11,
Mg

g0
D G , ~4!

where the fitting parametersM andg0 depend onN, L, and
Rc , and Q(a,x)[G(a,x)/G(a) is the regularized Gamm
function .

All numerically computed histograms fit well to the form
~4!. The dependence ofP(g) onto M is only weak forM
@1, making a precise determination ofM difficult. Within
this error limit, we did not find a significant dependence ofM
on Rc , and M is approximately given by theRc50 result,
M5N/@11L/(6l )# @12#.

The fitting parameterg0, marking the typical value of the
decay rates, can be determined to much better precisiong0
is much more important for the lasing threshold thanM, so
the limited precision ofM does not pose a problem. Th
determinedg0 is shown in Fig. 2.

For Rc50, g0L2 seems to approach a constant value aL
is increased. This value is about 20% larger than the va
1/(2cl) found numerically for equidistributed disorder in th
interval @2w;w# @12#. Trying to approach the limitL→`
numerically is not possible since then the sample would
come localized.

The important conclusion from Fig. 2 is that for sampl
of arbitrary lengths, the introduction of correlations in t
disorder leads to an increase of the decay rates. This incr
is quick asRc is increased starting from 0, and becom
slower for largeRc . The same behavior is seen in the cont
simulations withN580 and a fixedw ~and thus variablel ).

Until now, all results are valid for both electronic an
photonic systems. Now we will specialize to random lase
The light inside a random laser is amplified by a laser d
This dye is able to amplify light within a certain range
frequencies, so onlyK@1 eigenmodes out of all eigenmode
of the system are amplified. This number varies only sligh
between different realizations of the same ensemble du
an effect known as spectral rigidity@1#. The lasing threshold
is given by the smallest decay rate out of theK modes within
the amplification window@18#. This is immediately obvious
since the lasing threshold is passed when photons are cre
faster than they can decay (5escape from the sample!.

FIG. 2. Characteristic decay rateg0 as a function of sample
length L and correlation radiusRc ~for samples of widthN550).
The dashed line is for the control simulations withN580 andL
525l .
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There are two different approaches to compute the las
threshold of a random laser. The direct approach is to co
pute the eigenmodes of a certain number of realizations
the disordered systems, then for each realization to determ
the smallest decay rate inside the amplification window, a
finally collect statistics for those values. Since this proc
yields only a single datum per sample, a very large num
of realizations needs to be computed to arrive at data
sufficient quality. The average lasing threshold determined
this way is depicted in Fig. 3 as dashed line.

Frequently more efficient is the second approach wh
one starts with the computation of the distributionP(g) of
the individual decay rates. The intermediary result is eithe
numerical histogram, or, by fitting the histogram to an an
lytical form, a distribution function that can be evaluate
directly for an arbitrary argument. We adopt the latter a
use Eq.~4! together with the values ofM andg0 computed
by fitting.

The distributionPl(g l) of the lasing threshold is the dis
tribution of the smallest value out of theK values, each dis-
tributed according toP(g). This assumes that the deca
rates of different modes are uncorrelated. ForK@1 this
seems logical, but to the best of our knowledge no expl
check of this assumption has been published so far. As a
effect of our computations, we will fill this gap.

Pl(g l) is difficult to evaluate numerically forK@1 since
it is sharply peaked. The positiongm of the maximum ofPl
is immediately seen to be given by

05
dP~gm!

dgm
F12E

0

gm
P~g8!dg8G2~K21!@P~gm!#2.

~5!

Since Pl is that sharply peaked,gm already contains all
the relevant information, and nothing relevant is lost by n
computing the entire distribution. The lasing threshold co
puted from Eq.~5!, after inserting the fitting parametersM
andg0 computed from the numerical histograms into Eq.~4!,
is shown as solid line in Fig. 3.

From the figure, two important conclusions can be draw
First, the lasing threshold computed via the two separ

FIG. 3. Comparison of the average of the lasing threshold,
rectly computed from the numerical data~solid line!, and the most
likely lasing threshold computed from the distribution of the ind
vidual decay rates~dashed line!. Both lines have been compute
from the same samples, explaining the correlation of the nois
the two sets of lines.
3-3
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methods agrees well.~The noise of the two sets of curves
correlated since the same raw data were used as inpu
both methods.! This means that the decay rates of differe
modes indeed are uncorrelated. Furthermore, also fitting
numerical histogram to the form~4! is a valid procedure.

The second conclusion—the heart of this paper—is t
introducing spatial correlations into the disorder of a rand
laser increases the lasing threshold, in contradiction to
dictions @10#.

In this paper, we have thus arrived at two related—but
identical—results. We have shown that the characteristic
cay rates increase if spatial correlations of the disorder
introduced~cf. Fig. 2!. The computed decay rate distributio
possesses the same form, just with different paramete
earlier observed for diffusive samples with uncorrelated d
order @12#. This first result means that the ‘‘typical’’ eigen
states become more lossy.

Our second result is that the lasing threshold also
creases~cf. Fig. 3!. This means that also the ‘‘special’’ eigen
states with lower-than-average loss, which are selected
mode competition to become the lasing modes, become m
lossy. Even though we did not directly compute the spa
extend of the eigenstates, this still clearly demonstrates
no localized~or prelocalized! eigenstates are formed by th
introduction of spatial disorder. We thus fail to observe t
prediction that such states should be created@10#.

There are several explanations for the difference betw
our results and Ref.@10#. One explanation is that a singl
ys

s
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ring-shaped area of increased dielectric constant does lea
the formation of a localized state, as suggested by the
thors, but the influence of the disorder around that rin
shaped area significantly reduces this effect. Another, equ
likely, explanation is that in our simulations, we are only ab
to treat samples of finite size, with a finite number of eige
states. The creation of a localized state may be an event
is so rare the we fail to see such an event occur in
finite-size simulations. On the other hand, the typical len
scale is given by the area per lasing mode, measured ex
mentally to be a few 10mm2 in two-dimensional ZnO films
@19#, and our samples are larger than this.

To give a definite answer on whether spatial correlatio
can explain the formation of localized states, more numer
studies are needed, preferably using different methods. S
cialized but numerically efficient models@5# cannot incorpo-
rate spatial correlations of the dielectric constant. Tw
dimensional FDTD simulations have already been used
describe random lasers@9#. These need to make only min
mal assumptions and can be extended to include arbit
spatial correlations. FDTD simulations thus might be a go
candidate, but diffusive samples need to be larger than
localized samples studied so far. Given that FDTD is co
putationally very expensive, it is not obvious to us wheth
this would still be numerically feasible.

This work was supported by the European Union Ma
Curie program under Grant No. HPMF-CT-2002-01794.
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